Electronic transfers

Qubit teleportation between non-neighboring nodes in a quantum network

  • Kimble, HJ The Quantum Internet. Nature 4531023-1030 (2008).

    ADS CAS Article Google Scholar

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum Internet: A Vision for the Future. Science 362eaam9288 (2018).

    ADS MathSciNet Google Scholar Article

  • Bennett, CH et al. Teleportation of an unknown quantum state via the classical and Einstein-Podolsky-Rosen dual channels. Phys. Rev. Lett. 701895–1899 (1993).

    ADS MathSciNet CAS Google Scholar Article

  • Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390575–579 (1997).

    ADS CAS Article Google Scholar

  • Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleportation of an unknown pure quantum state via two classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 801121-1125 (1998).

    ADS MathSciNet CAS Google Scholar Article

  • Furusawa, A. et al. Unconditional quantum teleportation. Science 282706–709 (1998).

    ADS CAS Article Google Scholar

  • Olmschenk, S. et al. Quantum teleportation between distant qubits of matter. Science 323486–489 (2009).

    ADS CAS Article Google Scholar

  • Nölleke, C. et al. Efficient teleportation between distant single-atom quantum memories. Phys. Rev. Lett. 110140403 (2013).

    Article on Google Scholar Ads

  • Pfaff, W. et al. Unconditional quantum teleportation between distant quantum bits in the solid state. Science 345532-535 (2014).

    ADS MathSciNet CAS Google Scholar Article

  • Langenfeld, S. et al. Quantum teleportation between distant qubit memories with a single photon as a resource. Phys. Rev. Lett. 126130502 (2021).

    ADS CAS Article Google Scholar

  • Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A. & Smith, A. Secure multiparty quantum computing with (only) a strict honest majority. In proc. 2006 47th Annual IEEE Fundamentals of Computer Science Symposium (FOCS’06) 249–258 (IEEE, 2006).

  • Arora, AS, Roland, J. & Weis, S. Quantum weak coin reversal. In proc. 51st Annual ACM Symposium on Theory of Computing (STOC 2019) 205-216 (ACM, 2019).

  • Van Meter, R. quantum network (Wiley, 2014).

  • Bao, X.-H. et al. Quantum teleportation between quantum memories of distant atomic sets. proc. Natl Acad. Science. 10920347–20351 (2012).

    ADS CAS Article Google Scholar

  • Briegel, H.-J., Dür, W., Cirac, JI & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 815932–5935 (1998).

    ADS CAS Article Google Scholar

  • Cabrillo, C., Cirac, JI, García-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. HAS 591025-1033 (1999).

    ADS CAS Article Google Scholar

  • Bose, S., Knight, PL, Plenio, MB & Vedral, V. Proposed teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 835158–5161 (1999).

    ADS CAS Article Google Scholar

  • Pompili, M. et al. Realization of a multi-node quantum network of distant solid-state qubits. Science 372259–264 (2021).

    ADS CAS Article Google Scholar

  • Humphreys, PC et al. Deterministic delivery of remote entanglement over a quantum network. Nature 558268-273 (2018).

    ADS CAS Article Google Scholar

  • Legero, T., Wilk, T., Kuhn, A. & Rempe, G. Time-Resolved Two-Photon Quantum Interference. Appl. Phys. B 77797–802 (2003).

    ADS CAS Article Google Scholar

  • Bradley, C. et al. A ten-qubit solid-state spin register with quantum memory for up to one minute. Phys. Rev. X 9031045 (2019).

    CAS Google Scholar

  • Cramer, J. et al. Correction of repeated quantum errors on a continuously encoded qubit by real-time feedback. Nat. Commmon. 711526 (2016).

    ADS CAS Article Google Scholar

  • Robledo, L. et al. High-fidelity projective readout of a solid-state quantum spin register. Nature 477574-578 (2011).

    ADS CAS Article Google Scholar

  • Jiang, L. et al. Repetitive reading of a single electron spin via quantum logic with nuclear spin accessories. Science 326267-272 (2009).

    ADS CAS Article Google Scholar

  • van Enk, SJ, Lütkenhaus, N. & Kimble, HJ Experimental Procedures for Verification of Entanglement. Phys. Rev. HAS 75052318 (2007).

    Article on Google Scholar Ads

  • Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal blind quantum computing. In proc. 2009 50th Annual IEEE Fundamentals of Computing Symposium 517–526 (IEEE, 2009).

  • Rose, BC et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science 36160–63 (2018).

    ADS CAS Article Google Scholar

  • Nguyen, C. et al. Quantum network nodes based on diamond qubits with an efficient nanophotonic interface. Phys. Rev. Lett. 123183602 (2019).

    ADS CAS Article Google Scholar

  • Trusheim, ME et al. Transformation-limited photons from a coherent tin vacancy spin in diamond. Phys. Rev. Lett. 124023602 (2020).

    ADS CAS Article Google Scholar

  • Son, NT et al. Develop silicon carbide for quantum spintronics. Appl. Phys. Lett. 116190501 (2020).

    ADS CAS Article Google Scholar

  • Lukin, DM, Guidry, MA & Vučković, J. Quantum photonics integrated with silicon carbide: challenges and prospects. Quantum PRX 1020102 (2020).

    Google Scholar article

  • Kindem, JM et al. One-shot control and reading of an ion integrated in a nanophotonic cavity. Nature 580201-204 (2020).

    ADS CAS Article Google Scholar

  • Chen, S., Raha, M., Phenicie, CM, Ourari, S. & Thompson, JD One-shot parallel measurement and coherent control of solid-state spins below the diffraction limit. Science 370592–595 (2020).

    CAS Google Scholar Article

  • Ruf, M., Wan, NH, Choi, H., Englund, D. & Hanson, R. Quantum networks based on color centers in diamond. J.Appl. Phys. 130070901 (2021).

    ADS CAS Article Google Scholar

  • Grein, ME, Stevens, ML, Hardy, ND, and Benjamin Dixon, P. Stabilization of long fiber optic links deployed for quantum networks. In proc. 2017 Conference on Lasers and Electro-Optics (CLEO 2017) 1–2 (IEEE, 2017).

  • Dahlberg, A. et al. A link layer protocol for quantum networks. In proc. ACM Special Interest Group on Data Communications (SIGCOMM ’19) 159–173, (ACM, 2019).

  • Hensen, B. et al. Violation of Bell’s inequality with no escape using electron spins 1.3 kilometers apart. Nature 526682–686 (2015).

    ADS CAS Article Google Scholar